

Universal Test Set UTS 500

Manual do Usuário

Versão: V2.2

Registro de revisão de arquivo

Data	Versão	Descrição da alteração	Autor
2023/11/30	V2.0	Todos os módulos em novo design	
2023/12/05	V2.1	Todos os módulos de software foram atualizados e reestruturados.	
18/01/2024	V2.2	Adicionado módulos: medidor de energia, deslizamento de frequência, teste de oscilação Simplificado o Capítulo 4	

Índice

1	Visão geral do produto	2
2	Parâmetros técnicos e características técnicas	3
	2.1 Parâmetros técnicos	3
	2.2 Características técnicas	6
3	Apresentação externa	8
	3.1 Canais de saída de tensão e corrente	9
	3.2 Canal de saída DC auxiliar	9
	3.3 Interface USB	9
	3.4 Interface de rede	9
	3.5 Terminais de entrada binária	9
	3.6 Terminais de saída binária	9
	3.7 EXT	9
	3.8 Pulse Energy	10
	3.9 IRIG-B	10
	3.10 Saídas de nível baixo	10
	3.11 Tela touch 7"	10
	3.12 Interruptor liga/desliga	10
	3.13 Entrada da fonte	10
	3.14 Terminal de aterramento	10
4	Uso e considerações da bateria de lítio	11
5	Instruções de uso	11
	5.1 Menu principal	11
	5.2 Teste AC	12
	5.3 File	17
	5.4 Overcurrent	18
	5.5 Sequence	21
	5.6 Ramping	23
	5.7 Harmonic	25
	5.8 Distance	27
	5.9 Slip Frequency	32
	5.10 Slip Voltage	36
	5.11 Teste DC	39
	5.12 Oscilate Test	42
	5.13 Energy	44
	5.14 File Manager	47
	5.15 On line testing	48
	5.16 System	48
	5.17 Aux DC	50
6	Solução de problemas	51

1 Visão geral do produto

A maleta para teste de relé de proteção UTS 500 é um equipamento portátil, leve, versátil e potente. Desenvolvido para facilitar os testes pois dispensa o uso de laptop, graças ao software embarcado e sua tela touchscreen.

Este dispositivo é utilizado principalmente para aferição no local em testes de relés de proteção. O dispositivo usa uma bateria de lítio interna, nenhuma fonte de alimentação externa é necessária, é pequeno em tamanho e leve em peso, o que atende totalmente às necessidades de testes de maneira rápida e prática. Possui canais de corrente, tensão e portas binárias de entrada e saída, possibilitando inúmeros testes.

2 Parâmetros técnicos e características técnicas

2.1 Parâmetros técnicos

2.1.1 Fonte de alimentação e requisitos ambientais

Fonte de alimentação do carregador				
Fonte de alimentação	100~240Vac			
Frequência de entrada nominal	50 Hz/60 Hz			
Bateria interna				
Tensão nominal	28,8VDC / 93,6Wh, (3250mAh)			
Temperatura de Operação	Carga: 0 a 45°C (Ambiente) Descarga: -20 a 60°C (Ambiente)			
Tempo de carga (0-80%)	2h			
Tempo de carga (0-100%)	4h			
Ambiente de	temperatura -20°C ~ +70°C			
armazenamento	umidade ≤90%, sem condensação			

2.1.2 Saída de corrente e saída de tensão

Saídas de tensão AC						
		22,5 VA máx each@300V				
		21 VA máx each@200V				
Tensão de saída e Potência	4×300\/ (L-NI)	12,5 VA each@100V máx.				
		7 VA máximo each@63,5V				
		6,65 VA máximo each@57,7V				
		1,1 VA each@10V máximo				
Exatidão	<0,015%Rd+0,005%Rg Typ. <0,02%Rd+0,03%Rg Guar.					
Resolução	0,001V					
Deslocamento DC	<5mV Typ. <60mV Guar.					
Distorção	<0,05%Typ. / <0,1% (Guar.				
Resposta de subida e descida	<100US					

Saídas de tensão DC				
Tensão de saída e Potência	4 x300V (L-N) 22,5W máximo			
Precisão de tensão DC	<0,03%Rd+0,01Rg Typ. <0,04%Rd+0,06Rg Guar.			
Resposta de subida e descida	<100US			
Resolução	1mV			
Saídas de corrente AC				
Canais de origem	3			
	3x20A, L-N			
Tensão de saída e Potência	1x40A, LL-N	130VA max		
	1x60A, LLL-N			
Precisão	<0,015%Rd+0,01%Rg <0,02%Rd+0,03%Rg G	Typ. uar.		
Deslocamento DC	<1mA Typ. <2mA Guar			
Distorção	<0,05%Typ. / <0,1% Guar.			
Resposta de subida e descida	<100US			
Resolução	1mA			
Saídas de corrente DC				
Tensão de saída e Potência	1x10A, L-N	138W		
Precisão	<0,03%Rd+0,01Rg Typ <0,04%Rd+0,06Rg Gu	<0,03%Rd+0,01Rg Typ. <0,04%Rd+0,06Rg Guar.		
Resolução	1mA			
Frequência AC				
Alcance de sinais senoidais	10 ~ 1000Hz, 3000Hz transitório			
Precisão de saída	±5ppm			
Resolução	0,001Hz			
Fase				
Faixa de saída	xa de saída -360° ~ 360°			
Precisão de saída de 50Hz	±0,1° Typ. / <0,2° Guar.			
Resolução	0,001°			

2.1.3 Entrada binária & Saída binária

(1) Saída binária

Saída binária (contato de relé)					
Saídas binárias	2 pares (DO-1 e DO-2)				
Тіро	Contatos de relé, controlado por software				
Capacidade de ruptura AC	Vmax: 380V (AC) / Imax: 8A / Pmax: 2000VA				
Capacidade de ruptura DC	Vmax: 240V (DC) / Imax: 5A / Pmax: 150W				
Tempo de resposta	≤10 ms				
Saída binária (Fast eSSR)					
Saídas binárias	2 pares (DO-3 e DO-4)				
Simulador Disjuntor	Pode ser definido como status Abrir ou Fechar				
Capacidade de ruptura AC	Vmax: 250V (AC) / Imax: 0,5A				
Capacidade de ruptura DC	Vmax: 250V (DC) / Imax: 0,5A				
Tempo de resposta	<100US				
Desempenho do contato	Abra a saída de contato seco usando o relé opto acoplado, a resistência de ligamento é $\leq 6\Omega$ e a tensão suportável de desligamento é \geq DC300V				

(2) Entrada binária

Entrada binária e precisão de tempo			
Entradas binárias	4 pares		
Modo de disparo	Contato seco ou molhado		
Faixa de tensão de entrada	0 V ~ 300Vdc		
Precisão de temporização	< ±1ms @ 0,001~1s, < ±0,1% @ >1s		
Resolução de temporização	36us		
Limite máximo de tempo	Infinito		

2.1.4 Saída DC auxiliar

Auxiliar DC	
Faixa de saída	0 ~ 350VDC
Potência de saída	40W máximo
Exatidão	<1%

2.1.5 Comunicação

- Porta de rede: 1 interface RJ45 padrão, 10/100M auto adaptada;
- Porta serial: 1 porta serial padrão, suportando RS232 e RS485 ao mesmo tempo;
 - Taxa de transmissão da porta serial: 300 ~ 115200bps;
- USB: 1 interface USB2.0, usada para atualização de software e extrair relatórios;
- Suporte a saída via controle externo.

2.1.6 Gabinete/Chassis Estrutura, tamanho e peso

- Estrutura: liga de alumínio;
- Dimensão: 288mm × 185mm × 95mm—(C×A×L);
- Peso líquido: 3,7Kg (com bateria de lítio).

2.2 Características técnicas

Plataforma de software de alto desempenho

Este produto usa um microprocessador de 32 bits de alto desempenho e um sistema operacional embarcado em tempo real como plataforma de desenvolvimento, usando de forma abrangente várias tecnologias de ponta de hardware e software, e tem alto desempenho, alta precisão, alta confiabilidade e alta estabilidade.

Fácil de transportar e testar

Este produto vem com uma bateria de lítio, nenhuma fonte de alimentação externa é necessária, e é pequeno em tamanho e leve em peso, o que é conveniente para os testadores para transportar e facilitar o teste no local.

Tensão de saída curto-circuito, corrente de saída de circuito aberto, proteção contra superaquecimento

O superaquecimento resulta nos dois casos seguintes, então a UTS 500 interromperá automaticamente a injeção e emitirá o alarme ou o prompt do software.

- 1. o canal de tensão é curto-circuitado quando se está injetando tensão;
- 2. injeção de alta corrente por longos períodos;

Dissipação de calor

A dissipação de calor deste produto adota ajuste inteligente da velocidade do ventilador, e o volume de ar é controlado pelo sensor de temperatura no chassi do dispositivo. Durante o tempo normal de trabalho, os ventiladores funcionam em baixa velocidade para manter o ambiente de trabalho silencioso. Quando a temperatura no gabinete atingir 42°C ou mais, o ventilador deve acelerar automaticamente para melhorar a capacidade de dissipação de calor. O design delicado da estrutura e o de dissipação de calor da UTA500 não só permitem ter carga elevada, alta corrente e capacidade de trabalho a longo prazo, mas também melhoram muito sua estabilidade operacional e confiabilidade.

3 Apresentação externa

1	Saídas binárias
2	Entradas binárias
3	Canais de tensão
4	Canais de corrente
5	Interface de extensão externa
6	Interface RJ45 padrão, 10/100M adaptável
7	Interface USB 3.0
8	Interface de medição de medidor de energia
9	Interface de entrada e saída IRIG-B
10	Saída de sinal LLV, 0~8V rms
11	USB tipo B, comunicação externa.
12	Conector antena GPS
13	Ventilador resfriamento
14	Interruptor liga desliga
15	Terminal de aterramento
16	Saída DC auxiliar
17	Entrada fonte DC

3.1 Canais de saída de tensão e corrente

O Equipamento tem 4 saídas de tensão de fase "UA, UB, UC e UX". "Un" é o terminal comum. Adota tomadas de terminal banana, que podem ser usadas com cabos que acompanham o equipamento. Cada canal permite a injeção máxima de 300VAC.

Os canais de corrente são 3, "IA, IB, IC". "In" é o terminal comum de saída de corrente. Cada canal permite a injeção máxima de 20A. Se necessário, podem ser ligados em configuração monofásica para aumentar o valor da corrente total de saída, no entanto recomenda-se esta utilização durante tempos de injeção inferiores a 1s, caso contrário o equipamento e os cabos aquecerão rapidamente.

3.2 Canal de saída DC auxiliar

Pode-se utilizar os valores pré definidos ou definir um valor entre 12 ~ 350V.

3.3 Interface USB

Pode ser usado para atualizar software e firmware e extrair relatórios, tudo através de um pen-drive. Também pode-se utilizar um mouse USB para operar o equipamento.

3.4 Interface de rede

1 conector RJ45 padrão, 10/100M auto-adaptada.

3.5 Terminais de entrada binária

A UTS 500 foi projetada com 4 canais de entrada bonária. Eles são separados independentemente um do outro e de contato seco. Se necessário, a fonte de alimentação auxiliar fornecida pelo equipamento pode ser usada na entrada binária, o contato é conectado entre o terminal de entrada binário e o terminal comum durante o teste. Quando o sinal de entrada binário é válido, o indicador correspondente estará ativo.

3.6 Terminais de saída binária

Os 4 canais de saídas binárias são independentes entre si, e 2 pares usam saída de contato seco de relé opto-acoplador, outros 2 pares usam saída de contato de relé. Quando o sinal de saída binário é válido, o switch correspondente do software exibe fechado ou aberto.

3.7 EXT

Interface para extensão de função externa.

3.8 Pulse Energy

A interface de medição do medidor de energia elétrica é usada para medir a precisão do medidor de energia elétrica.

3.9 IRIG-B

Interface eletrônica de entrada/saída IRIG-B para disparo de sincronização de temporização.

3.10 Saídas de nível baixo

8 canais de sinal de tensão de saída de nível baixo, 0 ~ 8 Vdc/ac, no software UA, UB, UC, UX correspondem sinal baixo U1, U2, U3 e U4. IA, IB, IC, IX correspondem ao sinal baixo I1, I2, I3 e I4 respectivamente.

3.11 Tela touch 7"

Tela sensível ao toque LED de 7,0 polegadas, operação de toque completo, hábitos de operação do telefone celular, processamento translúcido da tela, contraste não reflexivo, exibição clara para uso ao ar livre.

3.12 Interruptor liga/desliga

Deve-se pressionar e segurar cerca de 2~3s para ligar ou desligar. Quando ligado o interruptor se acende em azul.

3.13 Entrada da fonte

Quando a bateria de lítio do dispositivo estiver fraca, conecte o carregador através dessa interface para carregar a bateria. A faixa de alimentação da fonte é 100V ~ 240VAC.

3.14 Terminal de aterramento

É indicado que o dispositivo esteja aterrado para garantir a segurança durante o uso.

4 Uso e considerações da bateria de lítio

A UTS 500 tem gerenciamento de energia integrado a qual estima a capacidade restante da bateria através da corrente e tensão de operação da bateria de lítio, exibe a capacidade na tela e tem funções de alerta e alarme de bateria fraca.

Nota: Por favor, desligue o dispositivo após o uso, é proibido armazenar o dispositivo ligado; A UTS 500 não pode ser armazenado com a bateria descarregada o que irá causar danos à mesma. Recomenda-se manter a bateria a mais de 70% quando armazenada. Muito tempo sem carga irá reduzir a capacidade da bateria ou até mesmo gerar danos, sugerimos que o dispositivo seja carregado pelo menos uma vez a cada 3 meses.

5 Instruções de uso

5.1 Menu principal

Quando a UTS 500 é ligada, a interface mostrada acima é exibida. Abaixo segue detalhes de cada item da tela:

- 1 Data e hora
- 2 Modelo do equipamento;
- 3 Indicador de temperatura interna. Ao clicar neste ícone, uma aba se abre mostrando as 4

últimas temperaturas e a velocidade de rotação do cooler;

- 4 Indicador de operação, fica verde quando o equipamento está injetando sinal;
- 5 Nível de bateria restante, quando em carga, ao lado esquerdo deste símbolo aparece um raio;
- 6 Módulos de teste (deslize para a esquerda para visualizar outros módulos);
- 7 Versão do software;
- 8 Teste remoto;
- 9 Menu de sistema;
- 10 Menu saída auxiliar DC.

5.2 Teste AC

Neste módulo estão habilitados 4 canais de tensão e 3 canais de corrente, sendo possível realizar diversos testes no relé de proteção, porém são testes únicos e relatório simples. Normalmente é utilizado para testes de verificação dos parâmetros do relé.

命 20)24-05-03 15:34:(00	AC T	est		29°C	57%
UA:	66.400 V	0.000 °	60.	000 Hz	Settin	g Trig	ger
UB:	66.400 V	240.000 °	60.	000 Hz	Step:	11.000 A	+
UC:	66.400 V	120.000 °	60.	.000 Hz	End:	5.000 A	
UX:	0.000 V	0.000 °	60.	.000 Hz	Calc		-
IA:	5.000 A	0.000 °	60	.000 Hz	Auto	1	.000 s
IB:	5.000 A	120.000 °	60.	.000 Hz	Variable:	IAIB	~
IC:	5.000 A	240.000 °	60.	.000 Hz	Item:	Amplitude	e ~)
					Mode:	From-to	~
Trip	Value	5.	000; 5.00	0 A 0			
Trip	Time		1.2	16s			
Start DI:10 20 30 40 DO:10 20 30 40 File							

Saída de A amplitude de tensão AC tetrafásica (0~300V), fase (-360°~+360°) e frequência (10~1000Hz) podem ser ajustadas. Depois que a configuração for concluída, clique em "Start" e a saída será de acordo com o valor da configuração.

UA:	0.000	V	0.000	•	50.000	Hz
UB:	57.735	V	240.000	•	50.000	Hz
UC:	57.735	V	120.000	•	50.000	Hz
UX:	0.000	V	0.000	•	10.000	Hz

Saída de A amplitude de corrente AC trifásica (0~20A), fase (-360°~+360°) e frequência
 corrente (10~1000Hz) podem ser ajustadas. Depois que a configuração for concluída, clique em "Start" e a saída será de acordo com o valor da configuração.

IA:	1.000	А	0.000°	50.000 Hz
IB:	0.000	А	0.000 °	50.000 Hz
IC:	0.000	А	° 0.000	50.000 Hz

Trip ValueRegistra o valor de tensão, corrente, fase ou frequência e o tempo de ação doTrip Timetrip (sinal de abertura/fechamento do relé). Se o modo "Auto" estiver
marcado e "mode" = "From to from", será registrado também o valor e tempo
do trip de retorno e o coeficiente de retorno será calculado
automaticamente.

Trip Value		
Trip Time		
	Return.Coeff	

Configurações de parâmetros

Set	ting	Trigge	r
Step:	1.0	00 V	+
End:	57.7	35 V	
Ca	lc		-
Auto	C	1.00)0 s
Variable	e: UA		V
TestIten	A	alituda	V
restreen	n: Am	plitude	-

- Step Defina o valor do passo durante a rampa manual ou rampa automática.
 O valor inicial será o ajustado nos canais. Pra rampa de descida, utilizar passo negativo.
- **End** Defina o valor final de tensão ou corrente durante a rampa automática.

Auto Se a opção "Auto" estiver marcada, a saída alterna para o modo de rampa automática. O valor de tempo definido é o tempo de cada passo.
 Em "Variable" é definido qual será a variável que será aplicado a rampa.
 Quando não há um sinal de trip, a rampa será interrompida somente ao atingir o valor definido em "End".

- **Variável** Pode ser definida como: tensões UA, UB, UC, UX, UAUB, UBUC, UCUA, UAUBUC ou correntes IA, IB, IC, IAIB, IBIC, IBIC, ICIA, IAIBIC.
- **TestItem** Selecione entre teste de amplitude, frequência ou fase.

Mode Selecione entre:

<u>From-to (de-para):</u>

O teste é finalizado automaticamente ao receber um sinal de trip ou atingir o valor final da rampa (quando o modo "Auto" estiver selecionado e não for detectado trip).

From-to-from (de-para-de):

O teste é finalizado automaticamente ao receber um sinal de trip e um sinal de retorno ou atingir o valor final da rampa (quando o modo "Auto" estiver selecionado e não for detectado trip).

Continuous (Contínuo):

Uma vez que o teste é iniciado é só será finalizado clicando em "Stop".

Calc Clique em Calc para entrar na interface de cálculo de falha, defina os parâmetros de falha, impedância de curto-circuito e o fator de aterramento, clique em OK após a configuração. Os valores de tensão e corrente da interface de teste AC serão automaticamente substituídos pelos resultados calculados, que podem substituir o processo de cálculo manual de entrada.

				Fault-C	alo	5				
Fault Par	ameter					Short-Ci	rcuit Im	pedar	nce	
Mode	Const I	~	Fault-I	1.000	A	z	0.000 Ω	R	0.000	Ω
F-Type	A-N	~	Load-I	0.000	A	θ 7	5.000 °	x	0.000	Ω
CT Dir.	Line	~	Load-0	0.000	0	Groundi	ng Facto	r		
PT Dir.	Line	~				Mo	de KL		~	
Fault Dir.	Forward	~				KL Ran	ge		0.670	
						KL Ang	le		0.000	•
			ОК			Ca	ncel			

Fault

Parameter

• Const-I:

Mode (modelo de cálculo)

A corrente é constante, ou seja, uma corrente de falha constante é ajustada, e a tensão de falha é calculada a partir da corrente de falha e impedância de curto-circuito.

Const-U:

A tensão é constante, ou seja, uma tensão de falha constante é ajustada, e a corrente de falha é calculada a partir da tensão de falha e impedância de curto-circuito.

Fault-U:

Quando o modelo de cálculo define a tensão como constante, o valor da tensão de falha pode ser definido.

Fault-I:

Quando o modelo de cálculo define a corrente como constante, o valor da corrente de falha pode ser definido.

F-Type (Tipo de falha):

Os tipos de falhas configuráveis são: A-N, B-N, C-N, A-B, B-C, C-A, A-B-N, B-C-N, C-A-N, A-B-C.

CT Dir. (direção do TC):

Pode ser configurado para apontar para a linha ou para o barramento.

PT Dir. (direção do TP):

Pode ser configurado para estar na linha ou no barramento.

Fault Dir. (Direção da falha):

Pode ser definido a direção para frente ou para trás.

Load-I (Corrente de carga):

No modo automático, defina o valor da corrente de saída do estado de carga.

Load-θ (ângulo de carga):

No modo automático, defina o ângulo do estado de carga.

Short-CircuitDefina o valor de impedância durante o curto-circuito. Pode-se definir o |Z| eImpedanceθ (impedância e ângulo), e o software calcula automaticamente os valores de
R e X (resistência e reatância); ou defina os valores R e X, e o software calcula
automaticamente o |Z| e θ.

Grounding Coeficiente de compensação de sequência zero.

Factor Existem 3 modos de configuração do fator de aterramento:

- 1. KL
- 2. Re/RI&Xe/XL
- 3. Z0/Z1

Quando o modo de ajuste é KL, a amplitude e o ângulo de KL precisam ser ajustados;

Quando o modo de configuração é RE/RL&XE/XL, é preciso definir a amplitude de RE/RL e a amplitude de XE/XL;

Quando o modo de ajuste é Z0/Z1, a amplitude e o ângulo de Z0/Z1 precisam ser ajustados;

O KL usa o modo Magnitude e Ângulo para calcular:

$$KL = rac{Z_0 - Z_1}{3 imes Z_1} = Re(KL) + j\,Im(KL) = |KL| \, {igstarrow} heta$$

RE/RL & XE/XL usam o modo de resistência e reatância para calcular:

$$rac{RE}{RL} = rac{R_{Z0} - R_{Z1}}{3 imes R_{Z1}} = KR \quad \& \quad rac{XE}{XL} = rac{X_{Z0} - X_{Z1}}{3 imes X_{Z1}} = KZ$$

Nota: KR & KX não representa as partes reais e imaginárias do coeficiente de compensação de aterramento K, e a conversão de KR & KX para K conforme abaixo:

$$K = \frac{K_R R_{Z1}^2 + K_X X_{Z1}^2}{R_{Z1}^2 + X_{Z1}^2}$$

Z0/Z1 é uma coordenada polar que representa a magnitude e o ângulo de KL. "Z0" representa a impedância da sequência zero, enquanto "Z1" representa a impedância da sequência positiva da linha protegida.

Nota 1:

O fator de aterramento deve ser selecionado corretamente, especialmente para falhas de curto-circuito de terra em que o coeficiente de compensação de sequência zero está envolvido no cálculo da tensão de curto-circuito. A seleção correta afetará diretamente os resultados do teste (a proteção de distância da linha de Nanzi, Sifang, Xuji adota o método de compensação Re/RI&Xe/XI, e a proteção de distância da linha do relé Nari adota o método de compensação KL)

Nota 2:

O ajuste da corrente de curto-circuito deve ser razoavelmente ajustado de acordo com o valor de impedância de cada seção. A fim de evitar que a tensão de curto-circuito calculada e a saída pelo testador sejam muito pequenas devido ao valor de impedância no valor fixo ser muito pequeno, resultando na amostragem do dispositivo de proteção incapaz de julgar, Neste momento, a corrente de curto-circuito desta seção deve ser aumentada. A fim de evitar que o dispositivo de proteção não consiga determinar se ocorre uma falha de linha devido à tensão de curto-circuito excessiva calculada e à saída pelo testador devido ao valor de impedância excessivo no valor fixo, resultando no não funcionamento da proteção, a corrente de curto-circuito desta seção deve ser reduzida neste momento.

- Lógica AND: Todas as condições de gatilho de entrada binárias devem ser satisfeitas simultaneamente para serem válidas
 Lógica OR: Desde que uma das condições de gatilho de entrada binária seja satisfeita, ela é considerada válida.
 - **DI** É possível definir as entradas binárias como:
 - 🗙 Desabilitada;
 - 🗸 Habilitada;
 - 🔳 Borda de descida;
 - 🚺 Borda de subida.
 - DO Saída binária:

Posição da saída binária durante o estado de falha do equipamento (fechamento/abertura)

Barra de statusDI e DO representam o status em tempo real das entradas e das
saídas binárias. Durante a execução do teste, os usuários podem
clicar manualmente no ícone do DO para alterar seu estado em
tempo real.

Start DI:10 20 30 40 DO:10 20 30 40

5.3 File

Todos os módulos possuem na parte inferior direita um botão chamado "File".

Após finalizar a parametrização ou o teste, clique neste botão e uma nova janela abrirá para salvar os parâmetros de teste ou o relatório do teste.

	F	ile	
Report	O Paramet	er O Configure	by file
Name:	AC_		.htm
	Save	Cancel	

Report	Salecione para salvar um relatório de teste em formato html (pode ser aberto em word no computador para edição).
Parameter	Selecione para salvar os parametros de teste em formato xml.
Configure by file	Selecione para encontrar um parâmetro de teste salvo na memória interna ou no pendrive. Deste modo é possível carregar uma parametrização salva, economizando tempo quando em campo.
Name	Digite o nome que deseja salvar o arquivo. Quando em "Configure by file", selecione o arquivo do qual se deseja carregar os parâmetros.
Save	Salva o parâmetro ou relatório. Quando em "Configure by file", é alterado para um botão "OK", clique para carregar o parâmetro selecionado.
Cancel	Cancela o processo e fecha a janela.

5.4 Overcurrent

Este módulo é usado para testes sobrecorrente de curva TDM e TDMI.

Este experimento consiste em vários itens de subteste, que são selecionados com base no projeto de teste e no tipo de falha. Os procedimentos de teste para cada subitem são os seguintes:

Sub-Teste n: Pré-falha -> Falha -> Refechamento.

Subteste n+1: Pré-falha -> Falha -> Refechamento.

2024-05-03 15:34:50		C	Overcurrent					29	°C		57%	
Parameter	r Setting		Trigger Chart									
Inst. Overcurren	t(50)		Time Overcu	rrent(5	51)		Test Poi	nt				
Pick-up:	4.25	0 A	Pick-up	:	0.850	A	I-te	est:	4.	500	A	
Time Dial:	0.30	0 s	Time Dial	:[0.100		Function	on:	50	~		Add
			Curve	: IEC	~		FaultTy	pe:	A-N	V		Multi
			IEC/BS142	El		V						
Test Result									De	lete		Clea
FaultType	ABS	Fund	ction T.non	n	T.min	1	ſ.max	Trip	Time	DI		Result
Start	DI:10	5 2	20 30 4	0	DO:10	5	20 3	0	40		F	ile

Configuração do	Parameter Setting Trigger Chart
alamanta da	Inst. Overcurrent(50) Time Overcurrent(51) Test Point
elemento de	Pick-up: 1.000 A Pick-up: 1.000 A I-test: 9.050 A
sobrecorrente e	Time Dial: 1.000 s Time Dial: 1.000 Function: 50 V Add
do ponto de teste	Curve: IEC V Fault Type: A-N V Multi
Inst. Overcurrent	Pick-up:
(50)	Defina o valor de corrente de falha.
	<u>Time Dial:</u>
	Defina o tempo de atuação.
Time Overcurrent	Pick-up:
(51)	Defina o valor de corrente de falha
(31)	
	Time Dial:
	Defina o tempo de atuação.
	<u>Curve:</u>
	Defina a curva padrão.
Test Point	I-test:
	Defina o valor da corrente de teste.
	Function:
	Defina a função a ser testada, 50 ou 51.
	FaultType:
	Selecione entre A-N, B-N, C-N, A-B, B-C, C-A, A-B-C, I2, 3I0, A, B ou (

- Add Adiciona um único ponto à lista de testes conforme os valores definidos em "Test Point".
- Mult Uma nova janela é aberta para adicionar vários pontos à lista de teste.

Add Multi-Points						
Begin	1.050 A					
End	10.000 A					
Step	1.000 A					
OK	Cancel					
UK	Cancer					

Nota: Os pontos de ensaio adicionados destinam-se apenas a elementos de sobrecorrente individuais (50 ou 51), não a características compostas formadas pela combinação de 50 e 51.

Parâmetros	Parameter Setting Trigger Chart						
abrangentes	Current Tol Rel: 5.000 % Current Tol Abs: 0.050 A Time Tol Rel: 5.000 % Time Tol Rel: 5.000 % Time Tol Abs: 0.040 s Max Fault Time: 200.000 s						
Current Tol	Defina as tolerâncias de corrente relativa e absoluta.						
Time Tol	Defina as tolerâncias de tempo relativa e absoluta.						
T.PreFault	Quando selecionado, defina o tempo onde é emitido um período de tempo de pré-falta (ou seja, estado sem carga) para garantir a restauração confiável dos contatos de proteção e a preparação para a reclosing. Portanto, a configuração desse tempo geralmente é maior do que o tempo de restauração da proteção (incluindo o tempo de carregamento de refechamento).						
Output Once	Ao marcar a caixa de seleção, o tempo de pré-falta é emitido somente uma vez.						
T.Interval	Tempo de intervalo Quando selecionado, defina o tempo de intervalo entre duas linhas de teste, usado se houver a necessidade de um período de tempo de saída zero para redefinir os contatos de operação do relé de proteção ou para retornar o disco de um relé eletromagnético à sua posição inicial. Durante este tempo, o sistema não emite nenhuma tensão ou corrente. Essa configuração de tempo é geralmente maior do que o tempo de restauração do relé.						
Max Fault Time	O maior tempo de falha gerado pelo equipamento para cada linha de teste. Usado para garantir que o teste prossiga para a próxima linha mesmo que não receba o sinal de trip. Esse tempo deve ser maior que o tempo de operação do relé.						

OC Directional Selecione se a simulação de falha inclui direcionalidade e forneça valores de tensão e configurações de ângulo de corrente correspondentes. (função 67). Estes valores podem ser alterados para cada linha de teste.

Logica de gatilho	ú	2023-12	-05 09:47	:41	11 Overcurrent 0°C)°C		
	Ρ	aramete	r Setti	ng T	rigger	Chart				
Logic: 🔵 And 🜘 Or										
				DC	່ ດ 1 ດ	2 0/3	o 4			
	2] Test Resu	lt					D	elete	Clear
	3	FaultType	ABS	Function	T.nom	T.min	T.max	Trip Time	DI	Result
	1	A-N	3.000A	51	No Action	351.744s	INF			NoTest
	2	A-N	5.000A	51	22.500s	18.288s	27.640s			NoTest
	3	A-N	2.000A	50	1.000s	0.950s	1.050s			NoTest
									-	
		Start	DI:1	୪ 2 ୪	3 0′ 40	/ DO:1	୪ 2 ୪	30 40	S R	eport

- Lógica AND: Todas as condições de gatilho de entrada binárias devem ser satisfeitas simultaneamente para serem válidas
 Lógica OR: Desde que uma das condições de gatilho de entrada binária seja satisfeita, ela é considerada válida.
 - DI É possível definir as entradas binárias como:
 - 🗙 Desabilitada;
 - 🔽 Habilitada;
 - 🔳 Borda de descida;
 - 🚺 Borda de subida.
 - **DO** Saída binária:

Posição da saída binária durante o estado de falha do equipamento (fechamento/abertura)

Barra de status DI e DO representam o status em tempo real das entradas e das saídas binárias. Durante a execução do teste, os usuários podem clicar manualmente no ícone do DO para alterar seu estado em tempo real.

Start DI:10 20 30 40 DO:10 20 30 40

Exiba a curva característica do elemento de sobrecorrente ao qual pertence o ponto de teste selecionado no momento.

Caso haja linhas de teste das funções 50 e 51, ambos os gráficos serão gerados no relatório.

5.5 Sequence

A sequência de estados é formada principalmente pela configuração manual da tensão, corrente, status de saída e tempo de execução para cada estado, gerando múltiplas saídas transitórias.

命 2024	1-05-03 15:36:0	9	Sequence			29°C	56%
	State [1 / 2	1 🕨 3	E []		Trip:	Time	~
Voltag	ge Currei	nt			Angle:	Abs.Angl	e
UA:	66.400 V	° 0.000	60.000	Hz	Time:		15.000 s
UB:	66.400 V	240.000 °	60.000	Hz		And (Or
UC:	66.400 V	120.000 °	60.000	Hz	DO:	$1 \sim 2$	$\sqrt{3}\sqrt{4}$
UX:	66.400 V	0.000 °	60.000	Hz	0	Calc	000
Test	Result Asse	ssment Eve	ent Recorder				
State	DI 1	DI 2	DI 3		DI 4		
1	No Action	No Action	No Action	N	o Action		
2	No Action	No Action	No Action	N	o Action		
Start	Start DI:1 of 2 of 3 of 4 of DO:1 of 2 of 3 of 4 of File						

Editando aA edição da sequência de estados inclui principalmente a adição, inserçãosequênciae exclusão de estado. A barra de status 1/3 no canto superior esquerdo dade estado.tela significa o seguinte:

- 1 = estado atual da sequência de estados;
- 3 = o número total de estados na sequência de estados;

Este dispositivo suporta até 32 estados.

Neste momento, os parâmetros do estado 1 podem ser ajustados de acordo com os requisitos de teste, incluindo principalmente a amplitude, fase, frequência, duração do estado, configuração da lógica de entrada e saída de tensão e corrente.

- Excluir: excluir o status atual
- Adicionar: para adicionar um novo estado
- Inserir: inserir um estado antes do estado atual
- Alternar o status para frente ou para trás
- Trip Tempo, contato, contato+tempo, Key-Press, GPS/IRIG-B
- Time: Definir a duração quando o estado atual é definido por tempo
- Angle: Abs.Angle (Fase absoluta): A fase é saída de acordo com a fase definida.
 Continuous (Saída contínua): O ângulo de comutação entre estados é continuamente emitido de acordo com a forma de onda.
- **Calc:** Os valores de tensão e corrente podem ser calculados automaticamente após a entrada da impedância, substituindo o processo de cálculo manual e depois inserindo-os um a um. O método de cálculo é exatamente o mesmo que o módulo de teste AC.
 - **DI** É possível definir as entradas binárias como:
 - X Desabilitada;
 - 🗸 Habilitada;
 - 🔳 Borda de descida;
 - 🔲 Borda de subida.

 DO Saída binária:
 Posição da saída binária durante o estado de falha do equipamento (fechamento/abertura)

Barra deDI e DO representam o status em tempo real das entradas e das saídasstatusbinárias. Durante a execução do teste, os usuários podem clicar
manualmente no ícone do DO para alterar seu estado em tempo real.

Start DI:10 20 30 40 DO:10 20 30 40

Resultados Exibe o tempo de ação de entrada durante o teste de sequência de estados.

do teste: Test Result Assessment Event Recorder

State	DI 1	DI 2
1	NoTest	NoTest
2	NoTest	NoTest
3	NoTest	NoTest

Assessment: É possível definir os parâmetros de configuração padrão e valores de desvio permitidos, e o software fará avaliações automaticamente com base nos resultados do teste. Um duplo clique nas células das colunas "Start", "Stop", "T.nom" e "Dev" abre uma janela para edição dos valores.

	Test Result	Assessment	Event Recorder			dd Delete		Clear	
	Start	Stop	T.nom	Dev	Dev Act		Time	Re	sult
1	State1	State1	1.000s	0.100)0s		NaN		NoTest
2	State2	State3	1.000s	0.100	0.100s		laN		NoTest

Event Recorder	Registra os eventos típio	momentos o cos durante c	de oc proc	orrência esso de	a e mudan teste.	ças de status d	e vários
	Test Result Assessment Event Recorder						
	Time	Туре	Signa	l Name	Slope		
Start	Clique em "Start" para iniciar o teste de sequência de status.						
Stop	Clique no bo	otão "Stop" p	ara in	terromp	per o teste.		

5.6 Ramping

O módulo de teste de rampa é usado para testar o processo de mudança transitória de múltiplas variáveis. Várias linhas de teste podem ser definidas, e as linhas de teste serão alterados de acordo com o seguinte processo:

Output once, T.Prefault e T.Interval ativos = Tempo de pré falta \rightarrow Linha de teste 1 \rightarrow Intervalo de falha \rightarrow Linha de teste 2 \rightarrow Intervalo de falha \rightarrow Linha de teste 3....

2024-05-03 15:37:40					Ramping				-	29°0	: (56%				
	Voltage		Cur	rent				S	etting		Trig	ger				
UA	0.000	v	0.	000	•	60.000	Hz	5	Step:	1	.000	V	Vari	able:	UA	~
UB	66.400	V	240.	000	•	60.000	Hz		End:	66	5.400	v		Item:	Am	plitude v
UC	66.400	V	120.	000	•	60.000	Hz	Т	ime:	1	1.000	s	A	ngle:	Ab	s.Angle 🗸
UX	66.400	V	0.	000	•	60.000	Hz		T.Prefau	ult:	1.	000	s		Outp	out Once
									T.Interv	al:	0.	200	s	Funct	tion:	50
N N	Test Resu	ult									Add Delete				Delete	
1	Variable	Fur	nction	T.no	om	Dev	Trip	Time		T	rip Val	lue			DI	Result
1	UA		50	1.00)0s	0.100s										NoTest
	Start DI:10 20 30 40 DO:10 20 30 40 F									File						

Tensão e

Defina os valores de tensão, corrente, fase e frequência iniciais.

corrente

Voltage	Current	
UA: 0.000	° (0.000 °	50.000 Hz
UB: 57.735	/ 240.000 °	50.000 Hz
UC: 57.735	/ 120.000 °	50.000 Hz
UX: 0.000	° (0.000 °	50.000 Hz

Configuração Setting Trigger 1.000 V Variable: UA Step: End: 57.735 V TestItem: Amplitude V 1.000 s Angle: Abs.Angle 🗸 Time: 1.000 s 📃 Output Once T.Prefault: T.Interval: 0.200 s Function: 50 Add Delete Step Defina o passo para cada linha de teste. Defina o valor final da rampa. End Time Defina o tempo entre cada passo. Variable A variável a ser testada. Pode-se selecionar as seguintes opções de tensão: Tensões monofásicas UA, UB, UC, UX, tensões de linha: UAUB, UBUC, UCUA, tensão trifásica: UAUBUC; Correntes monofásicas IA, IB, IC, correntes de linha IAIB, IBIC, ICIA, correntes trifásicas: IAIBIC; Angle Selecione se a saída é baseada na saída de fase absoluta ou no ângulo de fase contínuo. Function Aponte qual a função ANSI está sendo testada. Esta opção não tem impacto nos testes e destina-se apenas a fins de relatório. T.Prefault Quando uma opção é ativada, antes do início de cada subteste, o instrumento de teste emite um período de tempo correspondente à condição pré-falha (ou seja, estado sem carga). Isso é feito para garantir a restauração confiável dos contatos de proteção e a preparação para o "reclosing". Portanto, a configuração para esse tempo geralmente é maior do que o tempo de "reset" do relé de proteção (incluindo o tempo de carregamento de "reclosing"). Output Quando a opção é ativada, significa que o tempo de pré-falha será emitido

Once apenas uma vez.

Esse recurso só está disponível quando o tempo de pré-falha é ativado.

- **T.Interval** Entre duas simulações de falha, se houver um período de tempo necessário para que a saída seja zero para que o relé de proteção ative o "reset" do contato ou a plataforma giratória do relé eletromagnético retorne à sua posição inicial, pode-se definir o valor do tempo de interrupção. O sistema de teste não tem saída de tensão ou corrente durante este tempo. Essa configuração de tempo é geralmente maior do que o tempo de "reset" do relé.
 - Add Adicione uma linha de teste conforme configurações definidas.

Delet Exclua a linha de teste selecionada. gatilho

Lógica de Setting Trigger Logic: 🔵 And 🛛 🔘 Or DI: 🖸 1 🗹 2 🖂 3 🗸 4 DO: of 1 of 2 of 3 of 4

> Lógica AND: Todas as condições de gatilho de entrada binárias devem ser Logic satisfeitas simultaneamente para serem válidas Lógica OR: Desde que uma das condições de gatilho de entrada binária seja satisfeita, ela é considerada válida.

- DI É possível definir as entradas binárias como:
 - X Desabilitada;
 - Habilitada;
 - Borda de descida;
 - Borda de subida.
- DO Saída binária: Posição da saída binária durante o estado de falha do equipamento (fechamento/abertura)
- Barra de DI e DO representam o status em tempo real das entradas e das saídas status binárias. Durante a execução do teste, os usuários podem clicar manualmente no ícone do DO para alterar seu estado em tempo real.

DI:10 20 30 40 DO:10 20 30 40 Start

5.7 Harmonic

A UTS 500 pode definir a amplitude e a saída de fase da onda base e harmônico único (2 ~ 60), também pode definir a onda base e o harmônico único como uma fase de mudança para alterar o passo e a quantidade manualmente ou automaticamente aumentar / subtrair a saída.

2024-05-03 15:38:15					Harn	29°C 🔵 56%				
	Order:	1	[1/5]		Setting	Trigger				-
UA:	66.400	v	0.000	•	Step:	1.000	v	End:	66.4	400 V
UB:	66.400	v	240.000	•	Auto	1.000	s	+		-
UC:	66.400	v	120.000	•	From-to			Order: 1		~
UX:	66.400	v	0.000	•	Variable:	UA	~	Item: Rar	nge	~
IA:	5.000	A	0.000	•	THD:	Amplitu	ude	Percent	age	
IB:	5.000	A	240.000	•	T.nom:	1.000	s	Dev:	0.1	100 s
IC:	5.000	A	120.000	•	Test Result					
					Variable	Trip Valu	ıe	Trip Time	DI	Result
					UA					NoTest
S	Start DI:10 20 30 40 DO:10 20 30 40 File									

Order Selecione a ordem harmônica a ser saída, que pode ser selecionada de 2 a 60. Depois de selecionar a ordem, pode-se definir os parâmetros de saída UA,UB,UC e UX, IA,IB e IC e conteúdo harmônico da ordem harmônica atual.

Order: 1 v [1/5] 1 significa que a página atual é a configuração de onda fundamental; 5 significa o número total de páginas de parâmetros suportadas e pode-se alternar entre as páginas 1-5.

A 1ª página é a exibição de onda fundamental;

Da 2ª a 4ª são as configurações de ordem harmônica.

A página 5 mostra os valores THD e RMS de distorção harmônica total.

Step Defina o valor do passo durante a mudança de rampa, a amplitude ou porcentagem pode ser definida de acordo com o conteúdo harmônico.

End O valor final da mudança de fase durante a rampa automática, a amplitude ou porcentagem pode ser definida de acordo com o conteúdo harmônico

Auto Quando "Auto" for habilitado, defina o tempo de duração de cada passo.

Variable Tensão monofásica UA, UB, UC, UX, tensão interfásica UAUB, UBUC, UCUA, tensão trifásica UAUBUC, corrente monofásica IA, IB, IC, corrente interfásica IIAIB, IBIC, ICIA, corrente trifásica IIAIBIC podem ser selecionadas.

Item A amplitude ou o ângulo de fase podem ser selecionados como a variável de mudança.

THD Amplitude: exibe o conteúdo harmônico por amplitude; Percentage: exibe o conteúdo harmônico por porcentagem.

Test Result

Variable	Trip Value	Trip Time	DI	Result
UA				NoTest

Trip Value Registrar o valor da ação durante a ação de entrada binária

Trip Time Registrar o tempo de ação da ação de entrada

Test Result

Lógica de gatilho	SettingTriggerLogic:And \bigcirc OrDI: \checkmark 1 \checkmark 2 \checkmark 3 \checkmark 4DO: \checkmark 1 \checkmark 2 \checkmark 3 \checkmark 4					
Logic	Lógica AND: Todas as condições de gatilho de entrada binárias devem ser					
	satisfeitas simultaneamente para serem válidas					
	Lógica OR: Desde que uma das condições de gatilho de entrada binária					
	seja satisfeita, ela é considerada válida.					
DI	É possível definir as entradas binárias como:					
	• 🔀 Desabilitada;					
	• 🔽 Habilitada;					
	• 🗍 Borda de descida;					
	• 🚺 Borda de subida.					
DO	Saída binária:					
	Posição da saída binária durante o estado de falha do equipamento					
	(fechamento/abertura)					
Barra de	DI e DO representam o status em tempo real das entradas e das saídas					
status	binárias. Durante a execução do teste, os usuários podem clicar					
	manualmente no ícone do DO para alterar seu estado em tempo real.					
	Start DI:10 20 30 40 DO:10 20 30 40					

5.8 Distance

A distância pode ser verificada de acordo com os valores de ajuste do relé de proteção de distância. Defina os parâmetros de teste de acordo com os parâmetros de valor fixo no dispositivo de proteção.

2024-05-03 15:38:44		Distance			29°C	56%			
Parameter Setting	Time Tr	igger	UA	0.000V	0.0	00°			
Farameter Setting	Time II	iggei	UB	66.390V	240.0	240.000°			
Z 0.000 Ω R	0.000 Ω	Add	UC	66.390V	120.	000°			
9 75 000 ° X	0.000 0	Delete	UX	V000.0	0.0	00°			
0 73.000 ×	0.000 12	Delete	IA	5.000A	0.0	00°			
Fault A-N V		Clear	IB	0.000A	0.0	00°			
Fault Dir Forward	Tnom	1,000 €	IC	A000.0	0.0	00°			
Tadic Dir. Torward	T.HOIT	1.000 3	Impedance Factor						
Test Result				0.70 0.95	1.05	1.20			
Fault Fault Dir.	Z Ζθ	T.nom	De	v Trip Time	DI	Result			
B									
Start DI:1 of 2 of 3 of 4 of DO:1 of 2 of 3 of 4 of File									

Parâmetros	Par	ameter	S	etting	g Time Tr	rigger
	IZI	0.0	Ω 000	R	Ω 000.0	Add
	θ	75.0	• 000	x	Ω 000.0	Delete
	3	Fault A	-N	~		Clear
	Faul	t Dir. Fo	orward		T.nom	1.000 s

- |Z| e θ Defina o valor da impedância |Z| de proteção à distância e ângulo de impedância θ. R e X são calculados automaticamente.
 - R e X Defina o valor da resistência R (parte real) que representa a proteção à distância e a reatância X (parte imaginária) para a proteção à distância. |Z| e θ são calculados automaticamente.
- **Fault** Os tipos de falhas podem ser selecionados de A-N, B-N, C-N, A-B, B-C, C-A, A-B-N, B-C-N, C-A-N, A-B-C. Selecione o tipo de falha de acordo com a função a ser testada.
- Fault Dir. Direção da falta pode ser ajustada para frente (Forward) ou para trás (Reverse), dependendo da direção da falha. A direção oposta é o ângulo de impedância atual +180°
 - **T.nom** Defina o tempo em segundos para modificar o tempo de falha do ponto de teste atual.

Tensão de Exibe o valor de saída do estado de falha do ponto de ajuste atual.

falha e valor da corrente

UA	0.000V	0.000°
UB	66.390V	240.000°
UC	66.390V	120.000°
UX	0.000V	0.000°
IA	5.000A	0.000°
IB	0.000A	0.000°
IC	0.000A	0.000°

Impedance0,7 / 0,95 / 1,05 / 1,20 = indica o múltiplo do valor de impedânciaFactordefinido para o teste atual. Por exemplo, quando o valor de
impedância Z=1 Ω , o múltiplo de impedância selecionado como 0,7,
então o valor real de impedância medido é 1 Ω *0,7=0,7 Ω .

Impedance Factor										
0.70	0.95	1.05	1.20							

Modelo de	Parameter	Setting	Time Tri	gger			
cálculo	Mode Cor	ist I 🗸 🗸	Fault-I	1.000 A	GroundingKL	~	
	CT Dir. Line	e v	Load-I	0.000 A	KL Range	0.670	
	PT Dir. Line	e v	Load-0	0.000°	KL Angle	0.000 °	
	Time Tol Al	bs 0.:	100 s				
	Time Tol Rel 5.000 %						
	V AUX Cus	tom 🗸	Range	0.000 V	Angle 0.	000 °	

Mode: Const-I: A corrente é constante, ou seja, uma corrente de falha constante é ajustada, e a tensão de falha é calculada a partir da corrente de falha e impedância de curto-circuito; Const-U: A tensão é constante, ou seja, uma tensão de falha constante é ajustada, e a corrente de falha é calculada a partir da tensão de falha e impedância de curtocircuito. Falt-U Quando o modelo de cálculo define a tensão como constante, o valor da tensão de falha pode ser definido Fault-I Quando o modelo de cálculo define a corrente como constante, o valor da corrente de falha pode ser definido CT Dir. Direção do TC = Pode ser configurado para apontar para a linha ou para o barramento. PT Dir. Direção do TP = Pode ser configurado para estar na linha ou no barramento. Load-I No modo automático, defina o valor da corrente de saída do estado de carga. Load-0 No modo automático, defina o ângulo do estado de carga. Grounding Coeficiente de compensação de sequência zero Existem 3 modos de configuração do fator de aterramento: 1. KL 2. Re/RI&Xe/XL Z0/Z1 3. Quando o modo de ajuste é KL, a amplitude e o ângulo de KL precisam ser ajustados; Quando o modo de configuração é RE/RL&XE/XL, é preciso definir a amplitude de RE/RL e a amplitude de XE/XL;

Quando o modo de ajuste é Z0/Z1, a amplitude e o ângulo de Z0/Z1 precisam ser ajustados;

O KL usa o modo Magnitude e Ângulo para calcular:

$$KL = rac{Z_0-Z_1}{3 imes Z_1} = Re(KL) + j\,Im(KL) = |KL|\,{igstarrow} heta$$

RE/RL & XE/XL usam o modo de resistência e reatância para calcular:

$$\frac{RE}{RL} = \frac{R_{Z0} - R_{Z1}}{3 \times R_{Z1}} = KR \quad \& \quad \frac{XE}{XL} = \frac{X_{Z0} - X_{Z1}}{3 \times X_{Z1}} = KZ$$

Nota: KR & KX não representa as partes reais e imaginárias do coeficiente de compensação de aterramento K, e a conversão de KR & KX para K conforme abaixo:

$$K = \frac{K_R R_{Z1}^2 + K_X X_{Z1}^2}{R_{Z1}^2 + X_{Z1}^2}$$

Z0/Z1 é uma coordenada polar que representa a magnitude e o ângulo de KL. "Z0" representa a impedância da sequência zero, enquanto "Z1" representa a impedância da sequência positiva da linha protegida.

Nota 1:

O fator de aterramento deve ser selecionado corretamente, especialmente para falhas de curto-circuito de terra em que o coeficiente de compensação de sequência zero está envolvido no cálculo da tensão de curto-circuito. A seleção correta afetará diretamente os resultados do teste (a proteção de distância da linha de Nanzi, Sifang, Xuji adota o método de compensação Re/RI&Xe/XI, e a proteção de distância da linha do relé Nari adota o método de compensação KL)

Nota 2:

O ajuste da corrente de curto-circuito deve ser razoavelmente ajustado de acordo com o valor de impedância de cada seção. A fim de evitar que a tensão de curto-circuito calculada e a saída pelo testador sejam muito pequenas devido ao valor de impedância no valor fixo ser muito pequeno, resultando na amostragem do dispositivo de proteção incapaz de julgar, Neste momento, a corrente de curto-circuito desta seção deve ser aumentada. A fim de evitar que o dispositivo de proteção não consiga determinar se ocorre uma falha de linha devido à tensão de curto-circuito excessiva calculada e à saída pelo testador devido ao valor de impedância excessivo no valor fixo, resultando no não funcionamento da proteção, a corrente de curto-circuito desta seção deve ser reduzida neste momento.

Tolerância aoDefina tolerância absoluta (Time Total Abs) e a tolerância relativa (Time Totaltempo de falhaRef) da falha.

Configurações Ao emitir um estado de falha, o canal UX pode ser usado para emitir a tensão
 de Vaux de quarta fase ao mesmo tempo para simular o valor da tensão no barramento ou linha do outro lado.

Lógica de	2023-11-30 16:43:24	Distance	0°C	
gatilho	Parameter Setting	Time Trigger		
		Logic: 🔵 And 🛛 🔘 Or		
		DI: 🗸 1 🗸 2 🗸 3 🗸 4		
	$DO: \mathbf{o}' 1 \mathbf{o}' 2 \mathbf{o}' 3 \mathbf{o}' 4$			
	T.Prefault 3.	000 s T.Interval 1.000	s	
	Fault Time = Max T.no	m x 1.000 + 0.100	S	
	L			

	Start DI:10 20 30 40 DO:10 20 30 40 Report
T.Prefault	Defina o tempo de saída do estado de pré-falha (tensão nominal, corrente=0).
T.Interval	Defina o tempo de intervalo de falha, tempo após a saída da falha (tensão e corrente = 0)
Fault Time	O tempo máximo de saída da falha é calculado automaticamente por esta fórmula: T.nom x M1 + T1, unidade em s; Onde M1 padrão para 1 e T1 padrão para 0,1 s Fault Time = Max T.nom x 1.000 + 0.100 s
Lógica de gatilho	SettingTriggerLogic:AndOrDI: \checkmark 1 \checkmark 2 \checkmark 3 \checkmark 4DO: \checkmark 1 \checkmark 2 \checkmark 3 \checkmark 4
Logic	Lógica AND: Todas as condições de gatilho de entrada binárias devem ser satisfeitas simultaneamente para serem válidas Lógica OR : Desde que uma das condições de gatilho de entrada binária seja satisfeita, ela é considerada válida.
DI	É possível definir as entradas binárias como: • 🔀 Desabilitada; • 🖌 Habilitada; • 🗋 Borda de descida; • 🚺 Borda de subida.
DO	Saída binária:

Posição da saída binária durante o estado de falha do equipamento (fechamento/abertura)

 Test Result
 Exibi os resultados do teste do ponto de teste atual, incluindo itens de teste, valor de impedância de teste, tempo de ação e o número de pontos de teste.

Barra de status DI e DO representam o status em tempo real das entradas e das saídas binárias. Durante a execução do teste, os usuários podem clicar manualmente no ícone do DO para alterar seu estado em tempo real.

5.9 Slip Frequency

Este módulo pode ser usado para testar a função subfrequência da proteção de frequência. Inclui os seguintes parâmetros: frequência, tempo, df/dt, Under-I Latch, e Under-U Latch.

2024-05-03 15:39:51		Slip Freque	ency		30°0	56%
Parameter Setting	3				~	
Frequency	QT	me	C) df/dt		Add
Under-I Latch	Ou	nder-U Latch			_	Delete
F. From: 60.000 Hz	F. To:	45.000 Hz	F. St	tep: 1.000	Hz	Delete
df/dt: 0.100 Hz/	/s					Clear
Test Result						
Item Tri	p Value	Time	UA	66.390V		0.000°
			UB	66.390V		240.000°
			UCS	66.390V		120.000°
			UX	0.000V		0.000°
			IA	0.000A		0.000°
			IB	0.000A	3	240.000°
			IC	0.000A		120.000°
Start DI:1 of	20 30	5 40 DC	0:10	20 30	40	File

Guia	2024-01-18 11:45:20	Slip Frequency	0°C
Configuração	Parameter Setting		
		Prefault Time: 2.000 s	
		Hold Time: 5.000 s	
		Interval Time: 0.500 s	

- **Prefault Time** Defina o tempo de pré-falha para a variação de frequência. Durante o período de pré-falha, o software emite a tensão nominal, a frequência nominal e a corrente zero.
 - Hold Time Defina a duração pela qual as condições especificadas precisam ser mantidas. Deve ser maior que o tempo de trip para ação de frequência.
- Interval Time Defina o tempo de saída após a variação de frequência. Durante o período de intervalo, o estado de saída é definido como tensão zero e corrente zero.

Parâmetros de teste

Frequência

Frequency	Time	🔵 df/dt
Under-I Latch	OUnder-U Latch	
F. From: 50.000 Hz	F. To: 45.000 Hz	F. Step: 1.000 Hz
df/dt: 0.100 Hz/s		

Teste a configuração de trip de frequência para subfrequência, normalmente usada para testar o valor de trip de baixa frequência da proteção de frequência.

- **F. From** Defina o valor inicial da variação de frequência, geralmente a frequência nominal.
 - F. To Defina o valor final da variação de frequência, que deve ser definido como menor do que o valor de trip de subfrequência. Por exemplo, se a frequência de trip for de 49Hz, a frequência final pode ser definida como 48Hz. A frequência de trip do dispositivo de proteção deve situar-se entre os valores de frequência inicial e final.
- **F. Step** Defina o passo de decremento para a frequência. Tamanhos de passo menores resultam em maior precisão de teste, mas exigem mais tempo.
- Df/dt: Defina o valor de desvio de frequência com base na configuração de desvio de frequência do dispositivo de proteção, normalmente definido como um valor menor do que o limite de desvio de frequência do dispositivo de proteção.

Depois de definir os parâmetros, clique em "Adicionar" para adicionar um ponto de teste, em seguida, inicie a operação e visualize os resultados do teste

Time Teste a configuração de tempo de trip para subfrequência.

Frequency	Time	🔵 df/dt
Under-I Latch	Under-U Latch	
F. From: 50.000 Hz	F. To: 45.000 Hz	F. Action: 49.000 Hz
df/dt: 0.100 Hz/s		

F.From, Mesmas definições do "teste de trip de frequência";

F.To, df/dt

F.Action Defina o valor da frequência de trip do dispositivo de proteção. Depois de definir os parâmetros, clique em "Adicionar" para adicionar um ponto de teste, em seguida, inicie a operação e visualize os resultados do teste. Df/Dt

Teste o desvio de freguência.

- **F.From, F.To:** Mesmas definições do "teste de trip de frequência";
- df/dt From: Defina o valor do desvio inicial para o teste de desvio de frequência.
 O processo de software normalmente vai de nenhuma ação para ação. Portanto, recomenda-se definir o valor do desvio inicial como o valor de não-ação, que geralmente é maior do que o limite de desvio do dispositivo de proteção.
 - df/dt To: Defina o valor do desvio final para o teste de desvio de frequência. Geralmente é definido como menor do que o limite de desvio de frequência do dispositivo de proteção. Considere o valor do desvio inicial e certifique-se de que o limite de desvio de frequência do dispositivo de proteção fique entre os valores inicial e final.
- df/dt Step: Defina o tamanho do passo para alterar o desvio de frequência. Tamanhos de passo menores resultam em maior precisão, mas exigem mais tempo. Depois de definir os parâmetros, clique em "Adicionar" para adicionar um ponto de teste, em seguida, inicie a operação e visualize os resultados do teste.

Under-I Latch Parâmetros de configuração do teste de trava sob corrente.

F.From, Mesmas definições do "teste de trip de frequência";

F.To, df/dt:

- I From: Defina o valor da corrente inicial para o teste de bloqueio de baixo fluxo. O processo de software normalmente vai de nenhuma ação para ação. Portanto, recomenda-se definir o valor de corrente inicial como o valor de ausência de ação, que geralmente é menor do que o limite de baixa corrente do dispositivo de proteção.
 - I To: Defina o valor da corrente final para o teste de bloqueio de baixo fluxo. Geralmente é definido como maior do que o limite de baixa corrente do dispositivo de proteção. Considere o valor de corrente inicial e certifique-se de que o limite de baixa corrente do dispositivo de proteção fique entre os valores inicial e final.

I Step: Defina o tamanho da etapa para alterar a corrente. Tamanhos de passo menores resultam em maior precisão, mas exigem mais tempo. Depois de definir os parâmetros, clique em "Adicionar" para adicionar um ponto de teste, em seguida, inicie a operação e visualize os resultados do teste.

Under-U Latch Parâmetros de configuração do teste de trava sob tensão.

F.From, Mesmas definições do "teste de trip de frequência";

F.To, df/dt:

Quadro de parâmetros

- U From: Defina o valor da tensão de partida para o teste de trava sob tensão.
 O processo de software normalmente vai de nenhuma ação para ação. Portanto, recomenda-se definir o valor da tensão inicial como o valor de não-ação, que geralmente é menor do que o limite de tensão do dispositivo de proteção.
 - U To: Defina o valor da tensão final para o teste de trava sob tensão. Geralmente é maior do que o limite de tensão do dispositivo de proteção. Considere o valor da tensão inicial e certifique-se de que o limite de tensão do dispositivo de proteção fique entre os valores inicial e final.
- **U Step**: Defina o tamanho do passo para alterar a tensão. Tamanhos de passo menores resultam em maior precisão, mas exigem mais tempo.

Depois de definir os parâmetros, clique em "Adicionar" para adicionar um ponto de teste, em seguida, inicie a operação e visualize os resultados do teste.

BotõesAdd: adicione um ponto de teste.Remove: exclua o ponto de teste selecionado no momento.Clear: Limpe todos os pontos de teste.

UA	60.000V	0.000°
UB	60.000V	240.000°
UC	60.000V	120.000°
UX	0.000V	0.000°
IA	0.000A	0.000°
IB	0.000A	240.000°

Neste quadro são mostrados os valores de saída do ponto de teste atual.

Test Result

2	Test	Result
---	------	--------

1	Item	Trip Value	Time
1	Frequency	NoTest	NoTest

Este é o ponto de teste atual, juntamente com seu status e resultado do teste.

5.10 Slip Voltage

Este módulo pode ser usado para testar a função de trip de subtensão para proteção de tensão. Inclui: tensão de ação, tempo de ação, deslizamento de tensão e trava de baixa corrente.

2024-05-03 15:40:22 Slip Voltage		30°C 56%
Parameter Setting		
Voltage Time) dv/dt	Add
Under-I Latch		Delete
U From: 66.390 V U To: 30.000 V U S	tep: 1.000	Clear
dv/dt: 0.100 V/s	0	cicui
lest Result	114 66.20	01/ 0.0008
Item Trip Value Time	UA 66.39	00 0.000
	UB 66.39	00 240.000
	UC 66.39	0V 120.000 ⁻
	UX 0.000	₩ 0.000°
	IA 0.000	0.000°
	IB 0.000	A 240.000°
	IC 0.000	A 120.000°
Start DI:10 20 30 40 DO:10	20 30	40 File

Guia	â 2024-01-18 11:45:20	Slip Frequency	0°C
Configuração	Parameter Setting		
		Prefault Time: 2.000 s	
		Hold Time: 5.000 s	
		Interval Time: 0.500 s	
Prefault Time:	Defina o tempo de software emite a ten zero.	pré-falha. Durante o per são nominal, a frequência	ríodo de pré-falha, o nominal e a corrente
Hold Time:	Defina a duração pel mantidas. Deve ser r	a qual as condições espec naior que o tempo de trip	cificadas precisam ser o.
Interval Time:	Defina o tempo de estado de saída é de	intervalo. Durante o per finido como tensão zero e	ríodo de intervalo, o e corrente zero.

Parâmetros de teste

Voltage Teste a configuração de trip de tensão para subtensão, normalmente usada para testar o valor de trip de baixa tensão da proteção de tensão.

- **U From**: Defina o valor inicial da variação de tensão, geralmente usado a tensão nominal.
 - U To: Defina o valor final da variação de tensão, com a exigência de que ele seja definido abaixo do valor de ajuste de tensão. Por exemplo, se o valor de ajuste for 55V, a tensão final pode ser definida como 53V. É necessário que o valor da tensão de ação do dispositivo de proteção fique entre a tensão inicial e a tensão final.
- **U Step**: Defina o tamanho do passo. Um tamanho de passo de tensão menor fornece maior precisão de teste, mas requer mais tempo.
- dv/dt: Com base no ajuste de deslizamento de tensão do dispositivo de proteção, o valor de deslizamento de tensão é geralmente definido para ser menor do que o valor de deslizamento de tensão especificado do dispositivo de proteção.

Time Testar o ajuste do tempo de ação da trava de subtensão.

Voltage	Time	🔵 dv/dt
Under-I Latch		
U From: 57.735 V	U To: 30.000 V	U Action: 49.000 V
dv/dt: 0.100 V/s		

U From, U Consulte as configurações do teste de função "Voltage".

To, dv/dt

U Action: Este é o valor definido da tensão de operação para trava de baixa tensão do dispositivo de proteção como a tensão de temporização.

Depois de definir os parâmetros, clique em 'Adicionar' ponto de teste, em seguida, comece a executar e exibir os resultados do teste.

- dv/dt Teste o ajuste de deslizamento de tensão para trava de subtensão.) Time 🔘 dv/dt Voltage Under-I Latch dv/dt From: 1.000 V/s dv/dt To: 5.000 V/s 1.000 V/s dv/dt Step: U From: 57.735 V U To: 30.000 V
- U From, U To Consulte as configurações do teste de função "Voltage".
- dv/dt From: Defina o valor inicial de deslizamento de tensão. O processo do software é geralmente de inação para ação, por isso recomenda-se que o valor inicial de deslizamento seja definido como o valor inativo, que geralmente é maior do que o valor fixo de deslizamento do dispositivo de proteção.
 - dv/dt To: Defina o valor final de deslizamento de tensão. Geralmente, o ajuste é menor do que o valor fixo de deslizamento de tensão do dispositivo de proteção. É necessário fazer referência ao valor inicial do deslizamento de tensão. O valor fixo de deslizamento de tensão do dispositivo de proteção deve estar entre o valor inicial e entre os valores finais
- dv/dt Step: Defina o tamanho do passo de alteração do deslizamento de tensão.
 Quanto menor o tamanho do passo, maior a precisão, mas mais tempo demora.

Depois de definir os parâmetros, clique no ícone de 'Adicionar' para adicionar pontos de teste, em seguida, comece a executar e exibir os resultados do teste

Under-I Latch Parâmetros de configuração do teste de trava sob corrente.

Voltage	Time	🔵 dv/dt
Under-I Latch		
I From: 5.000 A	I To: 1.000 A	l Step: 1.000 A/s
U From: 57.735 V	U To: 30.000 V	dv/dt: 0.100 V/s

U From, U To, Consulte as configurações do teste de função "Voltage". dv/dt

- I To: Defina o valor inicial para o teste de travamento sob corrente. O processo de software é geralmente da inação à ação. Portanto, é recomendável que o valor inicial atual seja definido como o valor de inação, que geralmente é menor do que o valor de configuração de baixa corrente do dispositivo de proteção.
- I From: Defina o valor final do teste de travamento sob corrente. Geralmente, a configuração é maior do que o valor de configuração de baixa corrente do dispositivo de proteção. Você precisa fazer referência ao valor inicial atual. O valor de configuração de corrente baixa do dispositivo de proteção deve estar entre o valor inicial e o valor final.

l Step:	Defina o tamanho do passo de corrnete. Quanto menor o tamanho					
	do passo, maior a precisão, mas mais tempo demora.					
	Depois de definir os parâmetros, clique no ícone de 'Adicionar' para adicionar pontos de teste, em seguida, comece a executar e visualize os resultados do teste.					
Botões	Add: a	dicione um p	onto de test	e.		
	Remov	ve: exclua o p	onto de test	e seleciona	do no momento.	
	Clear:	Limpe todos	os pontos de	e teste.		
Quadro de	Este é	o valor de s	aída para o	ponto de te	este atual.	
parâmetros	UA	60.000V	/ 0.0	00°		
	UB	60.000V	/ 240.	000°		
	UC	60.000V	/ 120.	000°		
	UX	0.000V	0.0	00°		
	IA	0.000A	0.0	00°		
	IB	0.000A	240.	°000		
Test Result	_⁄7 Tes	st Result				
	1	Item	Trip Value	Time		
	1	Voltage	NoTest	NoTest		
	Ecto Á	o nonto do	tosto atual	iuntomont	a com cou status o	

Este é o ponto de teste atual, juntamente com seu status e resultado do teste.

5.11 Teste DC

Neste módulo estão habilitados 4 canais de tensão e 1 canal de corrente. Permite rampa manual/automática.

2024-05-03 15:41:05	5	DC Test	30°	C 🔵 56%
UA: 66.400 V	90.000 °	0.000 Hz	Setting	Trigger
UB: 66.400 V	90.000 °	0.000 Hz	Step: 1.0	00 V +
UC: 66.400 V	90.000 °	0.000 Hz	End: 66.4	00 V
UX: 66.400 V	90.000 °	0.000 Hz		-
IA: 5.000 A	90.000 °	0.000 Hz	Auto	1.000 s
			Variable: UA	~
			Item: Am	olitude 🗸
			Mode: From	n-to 🗸
Trip Value		No Action		
Trip Time		No Action		
Start DI:1 o	20 30	40 DO:10	20 30 40	File

Ajuste deA amplitude de tensão DC trifásica pode ser ajustada (0~300V). Depoistensãoque a configuração for concluída, clique em "Start" e a saída será de
acordo com o valor da configuração.

UA:	57.735	V	90.000	•	0.000	Hz
UB:	57.735	V	90.000	•	0.000	Hz
UC:	57.735	V	90.000	•	0.000	Hz

Ajuste de corrente A amplitude de corrente DC monofásica pode ser definida (0-10A). Depois que a configuração for concluída, clique em "Start" e a saída será de acordo com o valor de configuração.

IA:	1.000 A	90.000	° 0.000	Hz
-----	---------	--------	---------	----

Trip value/time

Registra o valor de tensão ou de corrente e o tempo de ação do trip (sinal de abertura/fechamento do relé); Se o modo "Auto" estiver marcado e "mode = From to from", será registrado também o valor e tempo do trip de retorno e o coeficiente de retorno será calculado automaticamente.

Trip Value		
Trip Time		
	Return.Coeff	

Configurações de parâmetros

Sett	Setting		
Step:	1.0	00 A	+
End:	0.5	00 A	_
			-
Auto		1.0	000 s
Variable	: IC		~
Item	: Am	plitude	~
Mode	: Fror	n-to	~

- Step Defina o valor do passo durante a rampa manual ou rampa automática.
 O valor inicial será o ajustado nos canais. Pra rampa de descida, utilizar passo negativo.
- End Defina o valor final de tensão ou corrente durante a rampa automática.
- Auto Se a opção "Auto" estiver marcada, a saída alterna para o modo de rampa automática. O valor de tempo definido é o tempo de cada passo.
 Em "Variable" é definido qual será a variável que será aplicado a rampa.
 Quando não há um sinal de trip, a rampa será interrompida somente ao atingir o valor definido em "End".
- Variable Permite a seleção dos canais UA, UB, UC, UAUBUC ou corrente IA.

TestItem Neste módulo só é possível aplicar rampa de amplitude.

Mode Selecione entre:

From-to (de-para):

O teste é finalizado automaticamente ao receber um sinal de trip ou atingir o valor final da rampa (quando o modo "Auto" estiver selecionado e não for detectado trip).

From-to-from (de-para-de):

O teste é finalizado automaticamente ao receber um sinal de trip e um sinal de retorno ou atingir o valor final da rampa (quando o modo "Auto" estiver selecionado e não for detectado trip).

Continuous (Contínuo):

Uma vez que o teste é iniciado é só será finalizado clicando em "Stop".

Incrementa o valor da variável manualmente, o valor incrementado é o definido em "step".

Decrementa o valor da variável manualmente, o valor decrementado é o definido em "step".

Lógica de Patilho	Setting	Trigger
Satimo	Logic: 🔵 And	🔘 Or
	DI: 🗹 1 🗹 2	2 🖂 3 🖂 4
	DO: of 1 of 2	2 o' 3 o' 4

Logic Lógica AND: Todas as condições de gatilho de entrada binárias devem ser satisfeitas simultaneamente para serem válidas

Lógica **OR**: Desde que uma das condições de gatilho de entrada binária seja satisfeita, ela é considerada válida.

- **DI** É possível definir as entradas binárias como:
 - 🗙 Desabilitada;
 - 🗸 Habilitada;
 - Borda de descida;
 - 🚺 Borda de subida.

DO Saída binária:

Posição da saída binária durante o estado de falha do equipamento (fechamento/abertura)

Barra deDI e DO representam o status em tempo real das entradas e das saídasstatusbinárias. Durante a execução do teste, os usuários podem clicar
manualmente no ícone do DO para alterar seu estado em tempo real.

Start DI:10' 20' 30' 40' DO:10' 20' 30' 40'

5.12 Oscilate Test

Usado para testes de simulação de forma de onda de oscilação sobreposta autodefinidos.

命 20)24-05-03 15:41:2	22		Oscillate Test		30°C 🔵	56%
UA:	66.400 V	0.000	•	60.000 H	Hz	Setting Trig	ger
UB:	66.400 V	240.000	•	60.000 H	Hz	Percentage: 10.0	000 %
UC:	66.400 V	120.000	•	60.000 H	Hz	Phase: 0(000°
UX:	66.400 V	0.000	•	60.000 H	Hz	Frequency: 5 (
IA:	5.000 A	0.000	•	60.000 H	Hz	Variable: 11A	
IB:	5.000 A	240.000	•	60.000 H	Hz	Variable.	
IC:	5.000 A	120.000	0	60.000 H	Hz		
Trip	Value			No Action			
Trip Time No Action							
Start DI:10 20 30 40 DO:10 20 30 40 File							

Valores de	Defina o valor do	os p	arâmetros	pa	ara teste.	
corrente, tensão,	UA: 57.735	V	0.000	•	50.000	Hz
fase e frequência.	UB: 57.735	V	240.000	•	50.000	Hap
	UC: 57.735	V	120.000	•	50.000	Hz
	IA: 1.000	A	0.000	•	50.000	Hz
	IB: 1.000	A	240.000	•	50.000	Hz
	IC: 1.000	A	120.000	0	50.000	Hz
Resultado do teste	Trip Value				No Actio	on
	Trip Time				No Actio	on
Trip value:	Registra o valor de tensão ou valor de corrente do relé de saída do					
	quando a entrada binária agir.					
Trip Time:	Registra a tempo	en	n que a ent	tra	da binária en	tra em ação

Setting

Setting	Trigger
Percentage:	10.000 %
Phase:	0.000 °
Frequency:	5.000 Hz
Variable:	UA ~

Percentage: A porcentagem da forma de onda de oscilação em relação à forma de onda fundamental.

- **Phase:** O ângulo absoluto de fase inicial da forma de onda de oscilação sobreposta.
- Frequency: A frequência da forma de onda de oscilação sobreposta.
 - Variable: Escolha em qual ou quais fases a oscilação deve ser sobreposta.

Lógica de gatilho					
	Setting	Trigger			
	Lo	gic: 🔵 And	🔘 Or		
		DI: 🗸 1 🗸	2 🗹 3 🗹 4		
	I	DO: of 1 of	2 o' 3 o' 4		
Logic	Lógica AND: T	odas as condiçõ	ies de gatilho de ei	ntrada binária	s devem
	ser satisfeitas	simultaneame	nte para serem vá	lidas	
	Lógica OR : D	esde que uma	das condições d	e gatilho de	entrada

binária seja satisfeita, ela é considerada válida.

- **DI** É possível definir as entradas binárias como:
 - 🗙 Desabilitada;
 - 🗸 Habilitada;
 - 🔲 Borda de descida;
 - 🔲 Borda de subida.

DO Saída binária:

Posição da saída binária durante o estado de falha do equipamento (fechamento/abertura)

Barra de status DI e DO representam o status em tempo real das entradas e das saídas binárias. Durante a execução do teste, os usuários podem clicar manualmente no ícone do DO para alterar seu estado em tempo real.

Start DI:10 20 30 40 DO:10 20 30 40

5.13 Energy

ENERGY PULSE

Esta função pode ser usada para calibração de precisão de medidores de energia.

2024-01-18 11:42:09			Energy			0°C		
Parameter	Parameter Setting Pulse Output							
VL-N 100	0.000 V Fred	uency	50.000 Hz	Add	UA	100.	V000	0.000°
		,		7100	UB	100.	V000	-120.000°
VL-L 173	3.205 V C	Current	5.000 A	Delete	UC	100.	V000	120.000°
Angle	000 °	Pulse	5,000	Clear	IA	5.0	00A	0.000°
			5.000	cicui	IB	5.0	A00	-120.000°
Cos ϕ 1	.000	In	d. ∽∫		IC	5.0	00A	120.000°
Test Resul	Test Result							
Power	Factor	Pulse	Time	Setting	Ac	tual	Dev	Result
Start DI:10' 20' 30' 40' DO:10' 20' 30' 40' File								

ENERGY PULSE

- **+5V** Este terminal emite uma tensão de +5V DC, usada em conjunto com GND.
- **GND** Terminal de terra para sinais de pulso.
 - IN Entrada de pulso, conecta-se à saída de pulso do medidor de energia, usado em conjunto com GND.
- **OUT** Saída de pulso, quando a opção "Output Local Pulse" é selecionada na página "Pulse Output", este terminal emite pulsos, usado em conjunto com o GND.

Parâmetros	<u>۵</u> 2024	-01-18 11	:42:09	E	iner	rgy		0°C		
de teste	Parame	Parameter Setting Pulse Output								
	VI-N	100.000	VErequency	50.000	ц.,	Add	UA	100.000V	0.000°	
	VL-IN	100.000	vriequency	50.000	m2	Auu	UB	100.000V	-120.000°	
	VL-L	173.205	V Current	5.000	А	Delete	UC	100.000V	120.000°	
	Angle	0.000	· Pulse	5 000		Clear	IA	5.000A	0.000°	
	Angle	0.000	Fuise	5.000	_	Clear	IB	5.000A	-120.000°	
	Cos φ	1.000		Ind.	V		IC	5.000A	120.000°	

VL-N Defina o valor nominal da tensão de operação do medidor de energia em relação ao neutro. O software calcula automaticamente o valor da tensão (VL-L).

- VL-L Defina o valor nominal da tensão de operação do medidor de energia entre as fases. O software calcula automaticamente o valor da tensão (VL-N)
- **Frequency** Defina o valor da frequência de operação do medidor de energia.
 - **Current** Defina o valor da corrente nominal do medidor de energia.
 - **Angle** Defina a diferença de ângulo de fase para o teste de tensão e corrente do medidor de energia. Depois de definir o ângulo, o software calcula automaticamente o valor de CosΦ.
 - **CosΦ** Defina o valor de Cos**Φ** para o teste do medidor de energia, ajustando-o em relação ao ângulo.
 - **Pulse** Defina o número de pulsos para o teste do medidor de energia.
 - **Ind/Cap** Defina o modo de operação do medidor de energia como indutivo ou capacitivo.
 - Add Adicione um ponto de teste. Depois de concluir as configurações de parâmetro, clique em "Add" para adicionar o ponto de teste à lista de teste.
 - Delete Exclua o ponto de teste selecionado no momento.

Clear Limpe todos os pontos de teste.

Valores de

saída

UA	100.000V	0.000°
UB	100.000V	-120.000°
UC	100.000V	120.000°
IA	5.000A	0.000°
IB	5.000A	-120.000°
IC	5.000A	120.000°

Este são os valores de saída para o ponto de teste atual.

Test Result:

ק [⊮] Test Result								
1	Power	Factor	Pulse	Time	Setting	Actual	Dev	Result
1	1500W	1.000 Ind.	-	3.333s	1.389Wh	-	-	NoTest

Exibição dos pontos de teste atuais, status do ponto de teste e exibição dos resultados do teste após a conclusão do teste.

Parâmetros	2024-01-18 11:43:16	Energy	0°C
abrangentes	Parameter Setting Pu	lse Output	
	Meter type P.Active 🗸 🔘 3P4	W O 3P3W	Single Precision 1.000 %
	Pulse/Quantity		Heat time 10.000 s
	Secondary 3600	imp/kWh	Start time 5.000 s
	Drimon Cocondany		
	CT 1.000 A 1.000 A	Pulse type R	ising Vumber cycle 1
	PT 110.000 V 110.000 V	Direction I/	Settling time 10.000 s
	Start DI:10 20	3 o' 4 o' DO	:1 of 2 of 3 of 4 of Report
			~
Meter Type	Defina o tipo de medido	r de energia,	as opções incluem potencia ativa,
	potência reativa e potên	cia aparente.	
	Trifásico de quatro fios (3	8P4W), trifási	co de três flos (3P3W), monotásico
	(Single).		
Precision	Definida a precisão d	o medidor	de energia, esta precisão será
	considerada na avaliação	o dos resultad	dos.
Pulse/Quantity	Aiuste o pulso para os	lados secun	dário e primário do medidor de
	energia Defina nulsos r	nara o lado s	secundário e o software calculará
	automaticamente os pul	lsos do lado	primário com base nos valores de
	CT/PT ou defina nulsos	nara o lado i	primário e o software calculará os
	pulsos do lado secundári	io com base i	nos valores de CT/PT
СТ	Defina os valores primár	ios/secundá	rios do transformador de corrente
	(TC).		
РТ	Definir os valores primár	ios/secundái	rios do transformador de potencial
	(TP).		
Heat Time	Defina o tempo de aque	cimento para	o medidor de energia.
Start Time	Defina o tempo de inicia	lização do m	edidor de energia.
Pulse Type	Defina o tipo de pulso co	omo borda as	cendente ou borda descendente.
Direction	Defina a direcão do mec	lidor de ener	rgia como importação/exportação
	somente importação ou	somente exr	ortação.
			· · · · · · · · · · · · · · · · · · ·
Number Cycle	Defina o número de puls	os para o tes	te do medidor de energia.

Setting Time Defina a duração do ponto de teste.

Saída de pulso	2024-01-18 11:43:58	Energy	0°C
	Parameter Setting	Pulse Output	
	Pulse constant	3600 imp/kWh	
Pulse constant	Defina o valor de pu	lso.	

Whether to	Quando selecionado, o valor da constante de pulso é a saída do terminal
send a local	OUT-GND.
pulse	

5.14 File Manager

Neste módulo é possível gerenciar relatórios e parâmetros de teste, tanto arquivos salvos diretamente no equipamento ou no Pendrive.

£ 2024-05-03 15:42:35	File Manage	30°C 🔵 55%
Location: Device File List	→ File Type: Parameter →	Module: AC Test
0	Name	5Selected
Export	Import	Delete

- Location Selecione o local do arquivo, "Device" = memória interna do equipamento ou USB=Pendrive.
- File TypeSelecione o tipo do arquivo, "Report" = relatório ou "Parameter" = parâmetros
de teste.
- Module Selecione o módulo no qual o parâmetro ou relatório foi gerado.
- **Export** Exporte o arquivo selecionado da memória interna para o Pendrive
- **Import** Importe o arquivo selecionado do Pendrive para a memória interna.
- **Delet** Delete o arquivo selecionado.

5.15 On line testing

Selecione para utilizar o equipamento remotamente.

5.16 System

As configurações do sistema são principalmente sobre a visualização do tempo do sistema, tempo de falha e informações de versão. Clique no botão "Configurações do sistema" na interface principal para entrar na interface de configurações do sistema.

2024-05-03 15	5:43:26	Syste	em		30°C	55%
Norm.Vo	lt: 66.39	0 V	Norm.0	Curr:	5.000	A
Norm.Fre	q: 60.00	0 Hz De	eglitch T	ime:	0.015	s
System Tim	e: 2024-05-0	3 15:43:2	20 🗲	Set	🔳 Кеу То	ne
Them	e: 🔘 Default	ОВ	lue	Screen:	3	00 s
Languag	e: English	~	Outp	ut Mode:	Amplifier	~
Device Typ	Device Type: UTS500 Software Version: 2.0.0004					
Serial Numbe	er: 203091030	Firmv	vare Vers	sion: 2.19	.2402	LS
Hardware	Device Cal	Upgra	de	License	Cle	ock

- Norm. Volt Defina a tensão nominal
- Norm. Curr Defina a corrente nominal
- **Norm. Freq** Defina a frequência nominal
- DeglitchO intervalo de configuração do tempo de falha é de 1~25ms,Timegeralmente o padrão é 0,015s, e também pode ser definido de acordo
com a experiência de campo real.
- SystemA configuração de hora conclui principalmente a calibração de tempo,Timeclique na exibição de hora da hora do sistema e insira as informações.Depois de selecionar a data e a hora, clique em "Set" para concluir a
configuração de data e hora.
- Key Tone Selecione para ativar o som ao tocar nas teclas.
- Theme Defina a cor do tema do software, cor padrão é verde.
- Screen Defina o tempo de tela ativa, após este tempo quando não houver atividade o equipamento entra em proteção de tela para economizar bateria, para retornar basta clicar na tela novamente.
- Language Selecione o idioma desejado: Chinês/Inglês/Português

Informações do	DeviceType: modelo do equipamento Software Version: versão do software Sorial Number: prímero sorial						
eupamento	Firmware Version: versão do firmware						
Hardware	Configurações de hardware, bloqueado por senha, somente deve ser configurado em fábrica.						
Device Cal	Utilizado para calibração do equipamento, bloqueado por senha, somente deve ser configurado em fábrica.						
Upgrade	Antes de iniciar a atualização é necessário preparar um Pendrive da seguinte forma: - Crie uma pasta chamada upgrade; - Cole dentro desta pasta o arquivo compactado disponível em nosso site; - Insira o Pendrive na porta USB do equipamento; - Clique em System>Ungrade. A janela abaixo abrirá						
	Upgrade						
	Lingrade files nath:						
	/media/usb/upgrade/kfaupgrade.zip						
	File Not Exist! U-disk Load Failed.						
	OK Cancel						
	Caso a mensagem seja: "File not exist!", tente formatar o Pendrive e repetir o processo. Caso a mensagem seja: "The File has been found", basta clicar em "OK" e a atualização iniciará, o dispositivo irá reiniciar automaticamente para						
	finalizar a instalação, NÃO desligue o equipamento neste momento.						
License	Authorization						
	License:						
	/media/usb/license/						
	File Not Exist! U-disk Load Failed.						

Um certificado de licença fornecido pelo fabricante pode ser importado para ativar alguns recursos opcionais avançados.

Cancel

ОК

Clock	(2023-12-05 10:22:23		Clock	0°C
	Ref	Clock	GPS	◯ IRIG-B
	Zone			~)
	External input Typ		Time Pulse	O Externin Pulse
		Mode:	Falling Edge	Rising Edge
	Trigger output	Туре:	Time Pulse	○ PPX ○ PPM
		Mode:	Falling Edge	ORising Edge

Permite selecionar opções de sincronização de tempo, como sincronização GPS e sincronização IRIG-B.

Apply

5.17 Aux DC

Neste menu é possível pode definir a saída auxiliar DC com os valores de: 24VDC, 48VDC, 110VDC, 220VDC ou qualquer outro valor, como mostrado na figura abaixo. Selecione o valor desejado e clique em OK e OK novamnete para habilitar a saída auxiliar.

Quando a saída está ativa o ícone no menu inicial ficará em vermelho.

Para desabilitar, basta clicar em "Aux DC" novamente, selecionar "Close" e clicar em OK>OK.

Aux.DC Output Setting	
Close 24V 48V	0 110V 0 220V
Other	0.000 V
Press "OK" to Output Aux.DC!	
ОК	Cancel

6 Solução de problemas

Problema encontrado	Razões e soluções sugeridas
Falha ao inserir novo valor durante o	Verifique se o campo selecionado ainda está
teste.	em modo edição (cursor piscando), caso sim,
	clique nele novamente e clique em "OK" no
	teclado.
A mensagem "O canal de tensão é	Verifique a fiação do canal de saída de tensão.
curto-circuito" aparece quando	
tensão de saída.	
A mensagem "O canal atual está em	Verifique a fiação do canal de saída atual.
circuito aberto" aparece quando	
corrente de saída.	
"Corrente" continua piscando quando	Verifique a fiação dos canais de corrente, caso
usando os três canais de saída de	não esteja utilizando algum canal, zere o valor
corrente.	de sua amplitude.
A mensagem "Superaquecimento do	A placa de energia superaqueceu e parou de
canal" aparece quando a saída	funcionar. Possíveis causas:
tensão e corrente.	- funcionamento com alta amplitude por
	longos períodos;
	- erro de fiação;
	- canal de corrente aberto;
	- utilização por longo período em ambiente
	externo ou sem controle de temperatura;
	Verifique os itens acima e deixe o equipamento
	resfriar.
	A UTS tem proteção que desabilita a injeção de
	sinais até que atinja uma temperatura pré
	estabelecida.

Para mais informações, entre em contato conosco: comercial@gpecx.com suporte@gpecx.com

WWW.EXS.COM